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Why Antarctica?
We were inspired by “Happy Feet”



Why Antarctica?
•Interesting data assimilation problem since there are few in situ
observations, especially over the sea

Soundings Synop Ships

•Remotely-sensed observations are important for successful 
data assimilation

Available observations at 0000 UTC 02 Oct 2007



•Does assimilating microwave radiances lead to better 
forecasts over the Antarctic?

Microwave Radiances

Available AMSU-A, AMSU-B, and MHS radiance 
observations at 0000 UTC 02 Oct 2007

AMSU: Advanced Microwave 
Sounding Unit

MHS: Microwave Humidity 
Sensor



Configuration Parameters
•WRFDA 3DVAR analyses at 00 and 12 UTC over October 2007

•Analyses initialized 72-hr WRF-ARW forecasts

•6-hr WRF forecasts (initialized by the GFS) used as backgrounds

•No “cycling” of background fields

•Lateral boundary conditions                     
from the GFS
•45-km horizontal grid spacing

•44 vertical levels; 10 hPa model top



Experimental Design
•Three experiments

1) Assimilated conventional observations only

2) Assimilated conventional observations and AMSU-A,       
AMSU-B, and MHS radiances using initial bias correction
coefficients that were “spun-up” for 3 months (July-
September) before the assimilation

3) Same as #2, but with “cold-start” bias correction coefficients

What are these bias 
correction coefficients?



Radiance Bias Correction (BC)
•Satellite measurements are prone to error

•Biases of satellite observations are measured with respect to 
the data assimilation system itself

•Biases arise for several reasons:

•Satellite instrument errors

•Scanning position/angles

•Atmospheric thermodynamic profile

•The model background field



Predictor-based BC
•Specify a set of predictors to perform BC

•Values of the predictors are known

•Either based on the model state (e.g., thickness between 
two pressure levels) or properties of the observing system 
(e.g., scanning angle)

•Each predictor has a corresponding coefficient (βi) that 
determines its weight

•We do NOT necessarily know the weights

•Want to find the optimal weights (coefficients)



How to Find Optimal BC Coefficients?

•Could do it during the analysis within the 3DVAR framework, 
fully considering all observations, the background field, and 
previous BC coefficients: “variational bias correction”

•Do it independently of the full analysis, just considering the 
radiance observations: “offline monitoring”

1) Assimilated conventional observations only
2) Assimilated conventional observations and AMSU-A,       

AMSU-B, and MHS radiances using initial bias correction
coefficients that were “spun-up” for 3 months (July-
September) before the assimilation

3) Same as #2, but with “cold-start” bias correction coefficients



Offline Monitoring Procedure

Reference 
fieldβ0

radiances: t = 0

β1

Minimize cost 
function

Reference 
field

Reference 
field

radiances: t = 1

Minimize cost 
function

β2

radiances: t = 2

Time

•Only “cycle” the 
coefficients (β), NOT 
the background field

•Assumption: The 
reference field is good

•Minimize cost 
function with β as
sole dependent
variable



Offline Monitoring Statistics

Time
obs - analysis

obs – background (with bias correction)

obs – background (no bias correction)

Before BC



Diagnostic Approach

•Often difficult to discern visual differences between experiments

•Few observations available for verification, especially over water

•Used ERA-Interim reanalyses as “truth” and basis for verification

•Focused on statistics aggregated over all analyses/forecasts

•Root mean square error (RMSE)

 

RMSE =
1
N

( f i − oi)
2

i=1

N

∑



Mean 500 hPa temperature    
analysis increments
Without radiances With radiances



Mean 500 hPa Temperature RMSE

Without radiances With radiances

•RMSE at the analysis time 

RMSE (K)



Aggregate RMSE
•RMSE at the analysis time 

conv
conv+RAD
conv+RAD_spin_up



•RMSE for 12-hr forecasts

Aggregate RMSE

conv
conv+RAD
conv+RAD_spin_up



•RMSE for 24-hr forecasts

Aggregate RMSE

conv
conv+RAD
conv+RAD_spin_up



Conclusions
•Addition of radiances led to better analyses and short-term 
forecasts over the Antarctic when initial bias correction 
coefficients were spun-up

•Without initially spun-up coefficients, analyses and short-term 
forecasts were degraded

NCAR is sponsored by the National Science Foundation

Properly bias correct 
radiances, or else…









Number of Assimilated Radiances

“spin up”
“cold start”



u-wind

v-wind

without radiances with radiances
•RMSE at the analysis time 

Mean 500 hPa Wind RMSE



Offline Monitoring Statistics

Standard 
deviation

Number of 
assimilated 
radiances

Time
obs - analysis

obs – background (with bias correction)

obs – background (no bias correction)

Before BC



Variational BC Procedure

x0β0

All obs : t = 0

Minimize cost 
function

x2

x1

All obs: t = 1

Minimize cost 
function

x2,β2

All obs: t = 2

Time

•“Cycle” the 
coefficients (β), and
(optionally) the 
background

•Minimize cost function 
with x and β as 
dependent variables

x1,β1



•RMSE for 48-hr forecasts

Aggregate RMSE

conv
conv+RAD
conv+RAD_spin_up



Predictor-based BC
•Specify Np predictors (pi; i = 1…Np) to perform BC

•Each predictor has a corresponding coefficient (βi) that 
determines its weight

•Based on these predictors, modify the observation operator 
(H) for radiance observations:

•Values of pi are known, but we do NOT know the values of βi

 

˜ H (xB,β) = H(xB) + βi pi
i=1

N p

∑ (xB)

Model-simulated brightness 
temperature from radiative 
transfer model

Correction for 
bias

Bias corrected 
radiance





Bias Correction

No bias correction With bias correction



J(x): Scalar cost function

x: The analysis: primary field of interest!

xb: Background field

y: Observations

H: Observation operator: includes radiative transfer model

R: Observation error covariance matrix

B: Background error covariance matrix

3DVAR Formulation

 

J(x) =
1
2

(x − xb )T B−1(x − xb ) +
1
2

(y − H(x))T R−1(y − H(x))



Predictor-based Bias Correction
•Specify Np predictors (pi; i = 1…Np) to perform bias correction 
(BC)

•WRFDA uses the following predictors:

1)1000-300 hPa thickness 

2)200-50 hPa thickness 

3)Surface skin temperature

4)Total column precipitable water

5)Satellite scanning angle

•Each predictor has a corresponding coefficient (βi) that 
determine its weight

State-dependent



Variational Bias Correction
•Satellites move in and out of limited-area domains

•Not always enough data to perform meaningful bias 
correction

•Can overcome this problem by “spinning-up” the BC 
coefficients for an extended period of time before the 
assimilation using “offline monitoring”

•“Offline” because we do not make a complete analysis 
considering other data (i.e., the background, non-
radiances observations)



Variational Bias Correction
•Augment state vector with the BC coefficients (β), which 
introduces another term in the 3D-VAR cost-function:

 

J(x,β) =
1
2

(x − xb )T B−1(x − xb ) +
1
2

(β − βb )T Bβ
−1(β − βb ) +

1
2

(y − ˜ H (x,β))T R−1(y − ˜ H (x,β))

•This method determines β while considering the entire 
model state and other non-radiance observations

•New term for the bias-correction 
coefficients
•Bβ determines how much new 
coefficients depend on the old 
ones

Bias-
corrected 
radiances



The NESL Mission is:
To advance understanding of weather, climate, atmospheric composition and processes;

To provide facility support to the wider community; and, 
To apply the results to benefit society.
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